因为有每种颜色个数的限制,所以不能使用Polya
考虑退一步,使用Burnside引理求解
回忆一下Burnside引理,它需要求的是置换群中每一个置换的不动点个数,也就是施加一次置换之后新状态与原状态相同的状态个数。而施加一次置换之后状态不变的充要条件是:对于这个置换中的每一个循环,循环中所有位置的颜色都相同。
为了叙述方便,约定\(f(i,j,k,l) = \frac{i!}{j!k!l!}\)
首先考虑旋转。假设某一种旋转置换使得\(i\)位置的珠子变到\(i+k\)位置\((k \in [1,N] , N = a+b+c)\),不难知道这个置换是由\(gcd(N,k)\)个\(\frac{N}{gcd(N,k)}\)阶循环构成的。
假设\(\frac{N}{gcd(N,k)} | a\ \&\&\ \frac{N}{gcd(N,k)} | b\ \&\&\ \frac{N}{gcd(N,k)} | c\)(如果这个条件不成立显然没有方案),那么这\(gcd(N,k)\)个循环中有\(\frac{a}{\frac{N}{gcd(N,k)}}\)个是全白色,\(\frac{b}{\frac{N}{gcd(N,k)}}\)个是全灰色,\(\frac{c}{\frac{N}{gcd(N,k)}}\)个是全黑色,这是一个本质不同的可重排列计数问题,染色方案有\(f(gcd(N,k) , \frac{a}{\frac{N}{gcd(N,k)}} ,\frac{b}{\frac{N}{gcd(N,k)}}, \frac{c}{\frac{N}{gcd(N,k)}})\)种
接着考虑翻转。这里需要分类讨论一下:
①\(2 \not\mid N\),意味着所有的轴会且只会经过一个珠子。在这种情况下,总共有\(N\)种翻转置换,每一个置换都是由\(1\)个\(1\)阶循环和\(\frac{N-1}{2}\)个\(2\)阶循环组成。枚举这一个\(1\)阶循环的颜色,那么不动点个数为\((f(\frac{N - 1}{2} , \frac{a - 1}{2} , \frac{b}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b - 1}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b}{2} , \frac{c - 1}{2}) ) \times N\)
②\(2 | N\),意味着有\(\frac{N}{2}\)个轴不经过珠子,有\(\frac{N}{2}\)个对称轴经过\(2\)个珠子,跟上面一样枚举\(1\)阶循环的颜色计算答案,式子太长不想写了留给读者自行思考
还有这道题似乎要写高精
#include #include #include #include #include #include #include #include #include #include